A note on symmetric doubly-stochastic matrices
نویسندگان
چکیده
منابع مشابه
A note on doubly stochastic graph matrices
A sharp lower bound for the smallest entries, among those corresponding to edges, of doubly stochastic matrices of trees is obtained, and the trees that attain this bound are characterized. This result is used to provide a negative answer to Merris’ question in [R. Merris, Doubly stochastic graph matrices II, Linear Multilin. Algebra 45 (1998) 275–285]. © 2005 Elsevier Inc. All rights reserved....
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملEhrhart Series of Polytopes Related to Symmetric Doubly-Stochastic Matrices
In Ehrhart theory, the h∗-vector of a rational polytope often provides insights into properties of the polytope that may be otherwise obscured. As an example, the Birkhoff polytope, also known as the polytope of real doubly-stochastic matrices, has a unimodal h∗-vector, but when even small modifications are made to the polytope, the same property can be very difficult to prove. In this paper, w...
متن کاملOn A Conjecture Concerning Doubly Stochastic Matrices
In a 2002 paper, Kirkland showed that if T ∈ Rn×n is an irreducible stochastic matrix with stationary distribution vector πT , then for A = I − T , maxj=1,...,n πj‖A j ‖∞ ≥ n−1 n , where Aj , j = 1, . . . , n, are the (n − 1) × (n − 1) principal submatrices of A obtained by deleting the j–th row and column of A. He also conjectured that equality holds in that lower bound if and only if either T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1975
ISSN: 0012-365X
DOI: 10.1016/0012-365x(75)90012-6